

Role of Knowledge Economy in Modern Aerial Warfare: An Empirical Case Study of the Russia-Ukraine War

Shifa Ullah Malik¹, Zahid Yaqub², Sayed Amir Hussain Shah*³

¹Department of International Relations & European Studies, IBU University Sarajevo, Bosnia & Herzegovina.

²PhD Research Fellow (visitor) Department of Politics & International Relations University of Oxford, UK.

³*Faculty at Department of Social Sciences SZIBIST, Karachi, Pakistan

Corresponding author: dr.syedamirhshah@gmail.com

Keywords: Knowledge Economy, Aerial Warfare, Unmanned Systems, Ukraine Conflict

DOI No:

<https://doi.org/10.56976/jsom.v4i1.398>

This paper examines the ongoing war in Ukraine (2022-present) as a case study of how the knowledge economy is reshaping aerial warfare. It highlights Ukraine's ability to contest Russian air superiority despite limited conventional airpower, using a strategy that integrates commercial satellite imagery; AI-enabled unmanned aerial systems (UAS), decentralized drone manufacturing, and real-time data fusion. A mixed-methods approach combines qualitative analysis of technological and doctrinal shifts with quantitative data on platform losses and capability effectiveness. A finding shows that Ukraine's asymmetric strategy, supported by a transnational coalition of state actors and private tech corporations, has acted as a significant force multiplier. The study argues that future aerial dominance will depend on a nation's knowledge ecosystem, innovation capacity, data integration, and digitally skilled human capital, rather than platform counts alone. The paper also calls for military adaptation, enhanced public-private integration, and new international frameworks for regulating autonomous systems and civilian infrastructure use in warfare.

1. Introduction

The nature of war and its behaviour has always indicated the economic and technological paradigms that prevailed at their time (Toffler & Toffler, 1993). With the world economy having shifted off the industrial foundation base and onto an economy largely reliant on the production, dissemination, and utilisation of the knowledge and information what has come to be known as the knowledge economy (OECD, 1996; Lever & Wither, 2021) the old logic of military power is also being reorganised. This is what shifts the source of strategic advantage not out of tangible, capital-intensive resources such as heavy industry and massed platforms, but out of intangible, intellectual capital-intensive resources such as data, software, innovation cycles and human expertise (Cooper, 2023). No sphere has been more keenly felt and seen in change than the field of aerial warfare, which most traditionally had been regarded as the pinnacle of the industrial era military strength, which was represented by technologically advanced and immensely costly manned combat aircraft.

For nearly a century, the pursuit of air superiority the degree of dominance in the air battle that permits the conduct of operations by friendly forces at a given time and place without prohibitive interference by enemy air forces (Department of the Air Force, 2020) has been the central tenet of airpower theory. Achieving it was understood to require quantitative and qualitative superiority in fighter and bomber aircraft, supported by robust industrial capacity for production and maintenance (Meilinger, 2003). However, conflicts in the early 21st century have increasingly challenged this orthodoxy. The 2020 Nagorno Karabakh war provided a preliminary indication, where Azerbaijan's effective use of Turkish-manufactured Bayraktar TB2 unmanned aerial vehicles (UAVs) played a decisive role in overcoming Armenian conventional forces, highlighting the potential of relatively low cost, unmanned systems to destroy high value armour and air defence assets (Lever & Wither, 2021).

The continued war between Russia and Ukraine that began with a full-scale invasion in February 2022 is a much more comprehensive, intense, and consequential lab experiment in this shift. It shows an extreme asymmetry, Russia went into the conflict with what was generally judged to be one of the strongest integrated air forces on the planet, a significant number of modern fourth and fifth-generation fighter aircraft, and one of the most dense and sophisticated integrated air defence systems (IADS) on the planet (International Institute for Strategic Studies [IISS], 2023). By contrast, the air force of Ukraine was a much smaller force, consisting mostly of old-fashioned, Soviet-era planes, little modernized, and a worn-out, piecemeal air defence system on land (Cooper, 2023). Using conventional measures of air force dominance, Russian aerial hegemony was to be quickly in place, offering a decisive facilitating environment to operations on the ground.

However, to these expectations, Russia has never been able to establish air superiority over Ukrainian territory. The airspace over Ukraine is still unbroken, and Russian fixed-wing aviation is largely limited to performing stand-off attacks at either Russian or Belarusian airspace, firing long-range missiles as opposed to conducting penetrating attack missions with manned bombers (Bronk et al., 2022). The failure to recognize a critical Russian purpose cannot be attributed to the conventional airpower theory. Rather, it requires a study within the context of the knowledge economy. The approach to Ukraine has been inherently asymmetric,

using asymmetric platforms of heterogeneous ecosystem of knowledge-based capabilities to undermine the conventional strength of Russia.

This study holds that the Russia-Ukraine war is an empirical case study that indicates that the elements of the knowledge economy, namely ubiquitous commercial satellite intelligence, AI-enabled sensor-processing and target acquisition, massively scalable and agile production of unmanned systems, Open-Source Intelligence (OSINT) fusion, and resilient and software-upgradable Electronic Warfare (EW) have fundamentally broken the historic routes to the attainment and sustenance of the air superiority. The success of Ukraine lies in its capacity to operate as a networked knowledge system, which incorporates these knowledge assets more efficiently than the more central, platform-based force in Russia has been able to resist.

The research question that this study will work based on is as follows: How have the components of knowledge economy changed the dynamics of air superiority achievement and denial in the Russia-Ukraine war. The subsidiary questions are:

1. What are the theoretical models of integration and effects of such assets including Revolution in Military Affairs (RMA) and the developing Military-Industrial Complex (MIC)?
2. How effectively are the systems of knowledge-economy, and the traditional manned platforms, in terms of tactical and strategic effectiveness, and cost-exchange ratios, in this conflict?
3. What does this shift mean to military doctrine, organizational structure, politics in the alliance and the international law of security?

This paper is relevant to the academic and policy discourses of modern warfare offering a systematic, empirical, and theoretically based evaluation of this revolutionary conflict. Instead of anecdotal reporting, it takes an analytical method to understand how military competition at the top is being transformed by economic and technological change. The paper is written in the format of the typical empirical research, including the literature review, theoretical frameworks, description of the research methodology, presentation of empirical findings, discussion of findings, implications, and limitations, and concluding summary and recommendations.

2. Literature Review and Theoretical Framework

2.1 The Knowledge Economy: From Theory to Battlefield

The knowledge economy is not merely a case of moving the economy towards a service-based sector. It denotes the new form of economic organization in which the main source of value creation, productivity and competitive advantage is the systemic use of knowledge that includes information, expertise, ideas and innovation to all elements of economic activity (Powell & Snellman, 2004). It is described by OECD (1996) as an economy that has a direct foundation on production, distribution and use of knowledge and information. The main features are an excessive value on human capital and lifelong learning, priority of enabling infrastructure (information and communication technologies (ICT)) and national

systems of innovation that strongly integrate universities, national and corporate research and development (R&D) organizations, and entrepreneurial enterprises (World Bank, 2007).

The application of these principles to the military sphere triggers a number of severe transformations. First, it is the cause of the shift to a platform centric warfare to a network centric warfare (Alberts, Garstka, & Stein, 1999). Victory is not based as much on the personal ability of a warship, tank, or fighter jet but rather on its integration into a larger system of sensors, shooters, and decision-makers, which allows them to be aware of each other and command faster. Second, it alters the defence innovation process, moving away the closed, proprietary military R&D pipelines to the dual-use innovations and commercial off-the-shelf (COTS) sources. AI, robotics, satellite technologies, and cybersecurity are at the frontier more than they are in government labs, and are typically conducted by the private sector. Third, it facilitates the conversion of industrial mass to informational smart in the precision effects. The data fusion and AI used to produce dumb munitions in large quantities replace the mass production of dumb munitions to produce disproportional effects with a smaller number of precision-guided munitions (PGMs). As a result, the defense sector is changing into a producer of specialized physical objects to one that is integrator, modernizer, and protector of interconnected, information systems sourced internationally.

2.2 Theoretical Lenses: RMA and the Evolving MIC

There are two theoretical frameworks that are interconnected and necessary to place the effects of the knowledge economy on warfare in the context of the situation in Ukraine.

2.2.1 Revolution in Military Affairs (RMA):

RMA theory which has been greatly developed by Andrew Marshall of the U.S. Office of Net Assessment suggests that history is interspersed with events of discontinuous change in military technology, organization and doctrine that fundamentally change the nature and behaviour of warfare (Krepinevich, 1994). These revolutions make the past ways of war unfeasible and compel the armies to change or risk losing. The information-led or network-centric revolution is a phenomenon commonly attributed to the RMA, which has been occurring since the end of the 20th century (Marshall, 1993). Its core is the pursuit of decision superiority the ability to make and implement better decisions faster than an adversary. Key technological enablers include pervasive sensor networks (space-based, aerial, terrestrial), near-instantaneous global communications, precision-guided munitions, stealth technology, and increasingly, unmanned and autonomous systems (Cohen, 1996). The Ukraine conflict can be interpreted as the first large-scale, protracted war between peer(ish) adversaries that fully manifests the realities of this information-led RMA. It showcases a clash between a force (Russia) still heavily invested in the platform-centric, industrial model of the previous RMA (characterized by massed armour and artillery) and a force (Ukraine) that, by necessity, has adopted a decentralized, adaptive, network-based approach enabled by knowledge-economy assets.

2.2.2 The Military-Industrial Complex (MIC) Expanded:

President Dwight D. Eisenhower's 1961 farewell address famously warned of the dangers of the "military-industrial complex," the "conjunction of an immense military establishment and a large arms industry" whose "total influence economic, political, even spiritual is felt in every city, every State house, every office of the Federal government" (Eisenhower, 1961). This classic model describes a symbiotic, domestic relationship between a nation's armed forces, its political leadership, and its dedicated, state-contracted defence industrial base.

The Ukraine war reveals that this model has dramatically expanded and globalized. The contemporary MIC has become an integration of large technology companies whose main business is not military. Commercial satellite imagery, data analytics and AI, and data privacy Websites such as SpaceX (Starlink satellite communications), Maxar Technologies and Planet Labs, Palantir and Microsoft (cloud computing and cybersecurity) have all become unofficial and unacknowledged parts of the Western/Ukrainian war effort (Serfati, 2018; Cohen, 2022). This forms a tech-financial-intelligence complex where they do not develop capabilities to fight wars but rather militarize the global commercial technologies. This growth mixes up the historic demarcations between the civilian and military spheres, civil and corporate actors and domestic and global supply chains. The war effort in Ukraine is maintained not only by state-to-state deliveries of military equipment but also by a transnational network of separate businesses, crowd-funded projects and volunteer IT armies, a new, decentralized version of the MIC.

2.3 The Evolution of Aerial Warfare Doctrine

The conventional airpower doctrine, Douched and right up to the present-day advocates, focused on the superiority of manned fighting planes and the need to operate them as a centralized force to generate a concentrated effect (Warden, 1995). Successful operations in other fields were predetermined by air superiority. The modern doctrine, following the RMA and the know-economy dynamics, has changed greatly. Such theories as the U.S. Multi-Domain Operations (MDO) and Joint All-Domain Command and Control (JADC2) are the vision of all-encompassing integrated operations involving the air, land, sea, space, and cyber space (Department of Defence, 2020). The key characteristic of the success in this paradigm is the ability to be out-observed, out-decided, and out-acted in all domains with the opponent. The value of a single platform is specified in its contribution to the network. Thereby a commercial quadcopter, costing 1000 dollars, with real-time video of an enemy location, or a 200000 dollar loitering munition targeting a tank becomes a node in the kill chain that is as important to tactical success as a 100 million fighter jet operating in the strategic end of the battle. The war in Ukraine is a live experiment in this concept overhaul, where the comparative valuation of networked and disposable sensing and strike nodes is tested against conventional and exquisite, manned platforms.

The hypothesis is that the introduction of a coalition-backed, nimble ecosystem of knowledge in Ukraine has served as a force multiplier, which allowed it to neutralize the sheer conventional airpower dominance of Russia, control the airspace, and, thus, question the principles of airpower theories of the industrial age.

3. Methodology

In order to explore the role of the knowledge economy in the aerial aspect of the Russia-Ukraine war rigorously, the present study applies the embedded, single-case study design (Yin, 2018). The bigger picture is the war itself, and the unit of analysis that has been inserted into this bigger picture is the utilization and application of the knowledge-economy assets in the aerial warfare sector. In order to achieve the triangulation, a mixed-methods methodology was used to enrich the validity and description of the results through the combination of the qualitative knowledge and the quantitative validation. Information was obtained through several, but complementary sources to create a complete image. This involved a review of academic articles and books on airpower theory, RMA, the knowledge economy, and asymmetric warfare in a systematic manner. Full-fledged reports of major defence and security intellectuals, such as the Royal United Services Institute (RUSI), the International Institute of Strategic Studies (IISS), the Centre of Strategic and International Studies (CSIS) and the Centre of a New American Security (CNAS). Formal policy reports by the U.S Department of Defence, NATO and other interested military authorities.

Transcripts of official briefings, press releases of the Ukrainian and Russian Ministries of Defence, reporting by established, reputable defence reporters with extensive subject matter knowledge and a long history of being accurate (e.g., by The War Zone, defence News, etc.). Since the official loss numbers by both sides of the conflict are opaque, Open-Source Intelligence (OSINT) is essential to this study. The main quantitative data came about the Oryx blog (Oryx, 2024), an OSINT collective of collected losses that is based on visually confirmed data (photographs and video). The approach offers a testable, non-probabilistic low estimate on real losses as it only includes equipment where they can document a photographic or video graphic evidence of destruction, damage or capture. This information contains the type of aircraft, model, and, in case of its presence, the reason why the aircraft was lost. Additional quantitative information on the Ukrainian rates of drone production, system characteristics and approximate prices were collected based on the statements by the government, industry reports and credible news investigations. Where available, government contracts, military app development documentation (e.g., targeting apps), company proclamations of the participating companies in the technology sector (SpaceX, Palantir, etc.) were examined to comprehend how the task turned to the privates.

3.1 Data Analysis

The data obtained was processed using three major methods:

1. Thematic Analysis: It is a qualitative data coded inductively to determine the common themes and trends regarding knowledge-economy enablers. Some of the most prominent themes that were identified were: Innovation Agility and Adaptability, Networked Information and OSINT Fusion, Private Sector as Combat Enabler, and Human Capital and Digital Skill Premium.
2. Comparative Cost-Benefit (Cost-Exchange Ratio) Analysis: A simplified cost-exchange analysis was performed using the quantitative data on the losses incurred by Oryx. The approximate cost financial cost of a lost Russian high value platform (e.g. a Su-34 fighter bomber at some 36 million dollars, a Ka-52 attack helicopter at some 16 million dollars) was compared to the estimated cost of the Ukrainian system that caused it (e.g. a MANPADS

missile at some 50 000 -150 000 dollars, an FPV drone at some 400, an artillery shell guided by drone at some 5000 dollars). Although this is only an approximate analysis, it describes the asymmetric economic dynamics at work.

3. Process Tracing: Tactical and operational events in the air war were also recreated. Such engagements as the sinking of the Russian cruiser Moskva, the first defence of Kyiv, and the frequent attacks on the Russian assets of the Black Sea Fleet were examined to trace the causal chain of how the knowledge-economy assets (e.g., commercial satellite tip-offs, TB2 UAV surveillance, Neptune missile targeting) came together to result in the observed outcome.

4. The Conventional Disparity: Pre-Invasion Balance of Forces

The size of the traditional imbalance in the aerial forces before the invasion of 2022 reflects the importance of the further performance of Ukraine. The IISS Military Balance 2023 states that the aerospace forces (VKS) and naval aviation in Russia had over 1,500 military aircrafts. This featured modern, 4++ generation, fighters such as Su-35S and Su-30SM, a force of strategic bombers (Tu-160, Tu-22M3, Tu-95MS), modern attack helicopters (Ka-52, Mi-28), and a huge array of cruise and ballistic missiles. Importantly, it was defended by what was believed to be one of the best and most complex IADS in the entire world, which consisted of the S-400 and S-300 systems, backed by a plethora of shorter-range systems, such as the Pantsir-S1 (IISS, 2023).

By contrast, in 2021, the air force of Ukraine was a heritage of the Soviets. It had a fleet of about 125 combat capable aircraft, mostly modernized legacy MiG-29 and Su-27 fighters, Su-24 fighter-bombers, and Su-25 close air support fighters. It defended itself on the ground with an amalgamation of old S-300P and Buk-M1s, and a small amount of contemporary MANPADS (Cooper, 2023). Those setbacks had been augmented by the defeat of Crimea in 2014, during which much of its naval aviation and early-warning equipment had been seized. Russia had an overwhelming, theoretically decisive advantage by all conventional standards of airpower numbers, technological generation, strategic depth, and integration.

4.1 Knowledge-Economy Enablers: The Ukrainian Asymmetric Response

The success of the mobilization and the integration of the assets of the knowledge-economy is directly linked to the ability of Ukraine to challenge this benefit. The outcomes may be divided into four pillars, which are dependent on each other.

4.1.1 Information Dominance and the OSINT Revolution

The Ukrainian government and their allies have used the world wide, business information networks to gain such transparency on the battlefield that has not been seen before in warfare.

4.1.1.1 Commercial Satellite Intelligence (SATINT)

Persistent, high-resolution, and timely views of the entire theatre have been provided by the private companies such as Maxar Technologies, Planet Labs (with its constellation of

more than 200 Dove satellites), and Capella Space (synthetic aperture radar). This information is frequently sold to the Western governments and transferred through reliable networks to Ukraine and has been useful in strategic and operational intelligence. It allowed following the trajectory of the 40-mile-long Russian convoy that is moving towards Kyiv in March 2022, determining Russian staging areas and logistical bases, and evaluating the damage caused by strikes (Peters, 2022). This is what used to be the preserve of the superpower intelligence services, which have since been democratized giving a smaller country near real time, theatre wide awareness., has been democratized, providing a smaller nation with near-real-time, theatre-wide awareness.

4.1.1.2 Crowdsourced and Social Media Intelligence (SOCMINT)

Through social media platforms (Telegram, Twitter/X, Facebook), specialized geolocation tools, as well as collaborative online platforms, a decentralized, international network of volunteers, analysts, and Ukrainian civilians have tracked, verified and identified the location of Russian military forces. This hive mind essentially builds a huge, decentralized human sensor system, where the position of the field headquarters of a general is located and even the movement of a single artillery piece can be tracked. Artificial intelligence (AI) tools are becoming more common in sorting through this enormous deluge of publicly available data to extract patterns of interest to act upon, compressing the intelligence cycle down to days, hours, or even minutes.

4.2 The Unmanned Systems Revolution: Scalability and Adaptation

The attractive networks of scale and scalability characterized by the widespread deployment of unmanned systems at all ranks define the war as a shift away from the exquisite and low-density platforms.

4.2.1 Medium-Altitude Long-Endurance (MALE) UAVs The Bayraktar TB2

One of the earliest signs of Ukrainian resistance was the Turkish-produced Bayraktar TB2. Although it was not stealthy and invulnerable, it was useful as a networked ISR and precision-strike node. It operated up to 25,000 feet and it was used to provide continuous coverage of the battlefield, detecting artillery used by Ukrainian forces and to direct attacks on high-value, poorly defended columns and air defence systems used by the Russians at the war's start. It had a tremendous psychological and tactical effect; however, its operational value was in facilitating a more accurate execution of other fires (Bronk et al., 2022). TB2 casualties built up as Russian forces modified with more short-range air defence (SHORAD), electronic warfare, and this highlights the fact that no single system is a panacea in the game of adapting.

4.2.2 The Proliferation of Tactical and FPV Drones

Small, commercial, and custom-built drones have been the most transformative area of development in terms of the use on an industrial scale. The military project Army of Drones is a public-private venture that organizes a decentralized system of workshops and manufacturers into which tens of thousands of First-Person View (FPV) kamikaze drones are now being manufactured every month (Dixon, 2023). The cost of this system is between 400 US dollars and 1500 US dollars and this type of system is assembled using world sourced commercial parts (frames, motors, video transmitters, explosives). They are employed in reconnaissance,

artillery control and as direct attack ammunition against infantry, armoured fighting vehicles and even tanks. The cost-exchange ratio is even horrifying: a drone costing 500 can win a tank of T-80 with price worth of 4 million dollars or an artillery piece worth 2 million dollars. This is an archetypal best example of a knowledge-economy dynamic: fast, high-speed, software-driven innovation (e.g., the addition of AI to target recognition and tracking) at scale by an agile, networked production base, essentially transforming the economics of attrition at the tactical level.

4.3 Artificial Intelligence and Decision-Centric Warfare

The Ukrainian kill chain has AI integrated into it so that the time difference between detection and attack has been reduced.

4.3.1 AI for Automated Target Recognition (ATR):

The Ukrainian forces apply AI-based software, such as versions of the U.S. Department of Defence's Project Maven algorithms and home-grown ones, to the deluge of video footage drones and satellite shots to classify it. Such systems can automatically recognize and categorize military vehicles, equipment and in certain instances personnel so that even potential targets can be reviewed by humans in minutes instead of hours that would have been incurred in manually analysing the information. This completely speeds up the rate of operation and takes the cognitive burden off the intelligence analysts.

4.3.2 The Electronic Warfare (EW) "Chess Match":

EW the struggle to master electromagnetic spectrum is a typical knowledge-intensive field. Russia joined the war with an alleged upper hand, with advanced jamming and spoofing devices such as the Krasukha (high band jamming) and Murmansk-BN (high range communications jamming). First, these systems deteriorated Ukrainian communications and struck drones. Nonetheless, Ukraine has managed to remain flexible. Ukrainian EW units are also fast developing counter-measures using software-defined radios and COTS technology, along with developing waveforms and building their own jamming systems to attack the Russian drones, specifically the Iranian-made Shahed-136 loitering munitions. It has turned into a high-paced battle of software-release arms, with the main agendas being the ability to learn, code, and deploy electronic counter-countermeasures, the quickest (Galeotti, 2023).

4.4 Private Sector serves as a Direct Combatant

The war presents a new form of a partnership order of war between the state and the people.

4.4.1 SpaceX's Star link

The most influential single intervention by the private sector perhaps has been the supply of Star link satellite internet terminals by SpaceX. This system gave Ukraine resilient, high bandwidth, beyond-line-of-sight communications, which were generally immune to Russian kinetic attacks against physical infrastructure on the ground and many types of electronic jamming. It turned into a nervous system of Ukrainian military command and control (C2), the front forces and the civil power, which allowed coordinated actions even in case cell networks were ruined.

4.4.2 Agile Tech Firms

Aerorozvidka (NGO of IT professionals incorporated in the military) and Delta AI are Ukrainian tech companies that have functioned as military-tech start-ups. They quickly create and deploy drone operational software that is tailored, develop AI attack tools, and breach or modify enemy systems. Their agile development culture, fast prototyping and flat hierarchies are a stark contrast to the slower, bureaucratic procurement and development cycles of the traditional state-led MICs, which also gives them a significant advantage in the innovation competition.

4.3 Quantitative and Strategic Outcomes

The empirical data of the conflict is quite favourable to the main study about the effectiveness of knowledge-economy assets.

4.3.1 Strategic Outcome: Air Superiority Denied

The primary strategic result is that Russia has failed to achieve air superiority. Its fixed-wing combat aircraft do not routinely operate over Ukrainian-controlled territory beyond the immediate front lines. Deep strikes are conducted with cruise and ballistic missiles, or Iranian drones, launched from the relative safety of Russian airspace or the Caspian Sea. As noted by RUSI analysts, Ukrainian airspace remains “contested,” a remarkable achievement given the pre-war force disparity (Cooper, 2023).

4.3.2 Asymmetric Cost-Exchange Ratios

OSINT data provides compelling evidence of unfavourable cost dynamics for Russia. As of early 2024, Oryx has visually confirmed the loss of over 100 Russian fixed-wing aircraft and 150 helicopters (Oryx, 2024). These include advanced platforms like Su-34s, Su-35s, and Ka-52s. The majority were not destroyed in air-to-air combat but by ground-based air defence: legacy S-300s and Buks, Western-supplied systems like NASAMS and IRIS-T, and most ubiquitously, MANPADS like the Stinger. Critically, these ground-based systems were almost always cued by information from the knowledge-economy network drone spotting the target, a satellite identifying a flight pattern, or SOCMINT hinting at a helicopter landing site. The cost imbalance is acute: a \$50,000 Stinger missile (informed by a \$2,000 drone) destroys a \$15 million helicopter; a \$400 FPV drone disables a multi-million-dollar tank.

4.3.3 The Adaptation Race as a Learning Competition

The conflict is not static. Russia adapted to the initial TB2 threat by dispersing logistics, deploying more SHORAD, and fielding its own drone swarms (e.g., the Iranian Shahed-136, used to exhaust Ukrainian air defence missiles). Ukraine responded by diversifying drone fleets (replacing larger, more expensive, and harder-to-see FPV drones with smaller, cheaper and easier-to-detect ones), strengthening communications, and creating electronic warfare hunters to locate Russian jamming. This acceleration of countermeasures and reprisals is not so much a battle of industrial production but of learning rate, software development, and manoeuvrability a core competence of the knowledge society.

4.4 Discussion

The practical outcomes of the conflict in Russia-Ukraine require the reconsideration of the formulated theories and practices of the aerial warfare. The war confirms fundamental assumptions of the Information-based RMA and at the same time displays its evolved forms and unforeseen side effects.

4.5 Implications for Airpower Theory and Practice

The case study is also a strong indication that the traditional vision of air superiority as a two-polar, two sides of the campaign, the situation that needs to be conquered by fighter planes, is becoming a history. Instead, air superiority (or more accurately, “air domain control”) is a continuous, contested process across multiple, interconnected domains: the physical air, space (for sensing and communications), cyberspace (for data integrity and C2), and the electromagnetic spectrum (for sensing and jamming) (Department of the Air Force, 2020). Control is granular, temporal, and localized. A side can have local air denial capability (via MANPADS and drones) without having any traditional offensive air power.

Consequently, the focus of investment and doctrine must shift. The “platform” (e.g., the fighter jet) is no longer the sole centre of gravity; it is a (very capable) node within a broader “mesh” or “combat cloud.” Future force development must prioritize, Resilient, high-bandwidth, low-latency communications (like proliferated LEO satellite constellations), secure data links, and interoperable data standards. Redundant and heterogeneous combination of sensing nodes of billion-dollar reconnaissance satellites to thousand dollar civilian drones to provide persistence and survivability. The Brain: Advanced AI/ML to combine data, identify targets, and provide predictive logistics, and one day, autonomous swarm coordination. The Shooters: A combination of platforms, ranging between 6th-generation crewed fighters as quarterbacks and loyal wingman drones as loyal wingmen, long-range precision missiles, and attractable one-way attack UAVs.

4.6 The New Global Military-Industrial Landscape

The war has instigated the entire development of the expanded, globalized MIC. The Ukrainian defence can be described as a hybrid framework: it is maintained by the traditional state-to-state weapons shipments (Patriots, Leopards, F-16s) and a global network of tech companies that can offer essential digital services. This implies a number of things:

- a. States with closed, state-centric and corruption-prone MICs such as Russia have a problem with the speed and agility necessary in innovation. They are strong in mass production of munitions of the industrial age (artillery shells), and less skilled at rapid software updates and integration of systems which characterize knowledge-age warfare.
- b. The entry barriers are reduced by the worldwide globalization and commercialization of essential technologies. One can now buy commercial satellite imagery, drones, and encryption devices to a small country or non-state actor, and creates a powerful and asymmetric force that would never have been the case in 20 years.
- c. Western armies are now heavily reliant on a few tech giants of the private sector to provide under structure services (cloud computing, satellite commas). This introduces new corporate policy (e.g. SpaceX can geographically restrict the use of Star link), supply chain security and the attack surface of intricate commercial software vulnerabilities.

4.7 Ethical, Legal, and Strategic Challenges

War technologies the use of knowledge-economy tools in war concerns new dilemmas on a fundamental level:

- a. Target recognition via AIs and loitering munitions with automated attack functions put the boundaries of human-versus-computer responsibilities into a grey area. Who bears the responsibility of the programmer, the commander or the algorithm itself, should an AI system identify a civilian car as a military target? The controversy on Lethal Autonomous Weapon Systems (LAWS) is no longer hypothetical (International Committee of the Red Cross [ICRC], 2022).
- b. The military targeting by commercial satellite constellations and the attacks on the undersea data cables indicate a grey area in international law. The 1967 Outer Space Treaty banned the use of mass destruction weapons in space and not normal military functions. There is a need to control the risk of the escalation of the conflict to space or the destruction of global civilian infrastructure.
- c. The reality of ubiquitous surveillance, which business satellites and artificial intelligence analytics allow, will cast doubt on the privacy and data sovereignty even during peacetime. The distinction between commercial activity and national security surveillance is getting very thin.

5. Conclusion

The Russia-Ukraine war is a historical turning point that offers the first extensive, large-scale empirical data of the knowledge economy taking a new twist in aerial warfare in the modern day. The war has proven that intellectual capital, networked information systems, agile software-driven innovation, and a globalized privatized sector can be useful in compensating the immense differences in traditional, industrial-era military equipment. The success of Ukraine in depriving Russian air superiority is not one of fighter jet against fighter jet but of using an ecosystem of drones, satellites, AI and crowd-sourced intelligence in a resilient and adaptive network.

This signifies a sea change in a model of airpower of the industrial age (basing on massed, exquisite, manned platforms) to a knowledge-age model (basing on distributed, attractive, connected nodes and information dominance). The RMA theoretical framework and the extended MIC offer critical perspectives of this transition that has significant impacts on the global security.

The lessons of the same are clear to military strategists, defence planners and policymakers. The process of preparing to face any conflict in the future must go beyond a small-box approach to procurement of platforms. It requires a comprehensive approach that is concerned with:

1. Creation of National Innovation Ecosystems: Creating profound, organic convergence between the defence institutions, the academic institutions and the business sector in the business technology field to leverage innovation at the pace of relevance.

2. Investing in Human Capital: Making STEM education a priority and instilling a military culture in which digital fluency and critical thinking and decentralized initiative are valued as much as martial virtues.
3. Architecting of Resilience: How to design secure, intraoperative, and redundant multi domain command and control networks that can degrade and persist in the wake of cyber-attack.
4. Participating in the International Norm-Building: assuming a leadership role in the creation of new ethical frameworks and legal norms to regulate autonomous systems, relying on civilian infrastructure in warfare, and avoiding an arms race in space.

The fighter jet and the tank are not doomed by the war in Ukraine, but it is permanently shown that they are no longer lord alone. The next generation of air power, as well as the overall warfare in the modern world, will be won as much in silicon laboratories, code releases, and computer networks as the air skies of the battlefield. Knowledge economy has taken a front-line presence and it is also redefining the rules of war.

5.1 Limitations

In this study, there are a number of limitations that are inherent;

Data provided in an active conflict zone is incomplete, haphazard, and usually the target of a reserved propaganda and misinformation on both sides. They are secret in terms of operations. The Oryx data are very reliable though reflecting a bare minimum known number. It is definitely less than actual losses. There is also a bias in the data towards the creation of losses around the front lines or in Ukraine where the loss is more likely to be documented, which may underreport the loss far into Russia. The struggle is continuing in a dynamic way. The process of technological adaptations and tactical innovations is in a constant flux, that is, any analysis is always a time-stamped picture. Nevertheless, the uniformity of the patterns observed in various independent sources over a time span of over two years offers the empirical analysis and substantive conclusions with a very strong and valid basis.

5.2 Limitations of the Knowledge-Economy Model

Technological determinism should be shunned. Knowledge-economy capabilities do not represent a silver bullet. They have prerequisites:

- a. Reliance on Infrastructure: They need consistent power, internet access, and secure communications that can be easily affected by kinetic and cyber-attack.
- b. The Human Factor: They require a great degree of digital literacy, technical expertise, and creative thinking in the military and the society behind it. This human capital is not something that is developed at once.
- c. The Persistence of Mass: With the war developed into a grind attrition war in the east, industrial ability of manufacturing artillery shells, missiles, and armoured vehicles has become a determining factor once again. Knowledge economy allows precision and efficiency, but the industrial mass of war is still relevant in a prolonged battle of attrition. The best force is an

amalgamation of knowledge-age nimbleness (to gain control over a choice and pinpoint assaults) and a strength of industry-age ability (to sustain a duration and amount of fire).

6. References

Alberts, D. S., Garstka, J. J., & Stein, F. P. (1999). *Network centric warfare: Developing and leveraging information superiority* (2nd ed.). CCRP Publication Series.

Beznoсиuk, M. (2026). From Drones to Doctrine: Why Russia's Air War in Ukraine Is a Warning for Europe. *Thai national interest*, 6(2), 58-68.

Bronk, J., Reynolds, N., & Watling, J. (2022). *The Russian air war and Ukrainian requirements for air defence*. Royal United Services Institute (RUSI). <https://www.rusi.org/explore-our-research/publications/special-resources/russian-air-war-and-ukrainian-requirements-air-defence>

Carson, C., 2015. *Knowledge economies*.

Chávez, K. (2023). Learning on the Fly. *Arms Control Today*, 53(1), 6-11.

Chua, A. Y., & Chen, M. (2025). Defending Ukrainian soil: a knowledge management perspective. *Knowledge Management Research & Practice*, 1-11.

Chua, A. Y., & Chen, M. (2025). Defending Ukrainian soil: a knowledge management perspective. *Knowledge Management Research & Practice*, 1-11.

Cohen, E. A. (1996). A revolution in warfare. *Foreign Affairs*, 75(2), 37-54. <https://www.foreignaffairs.com/articles/1996-03-01/revolution-warfare>

Cohen, R. S. (2022). *The new military-industrial complex of the 21st century*. Brookings Institution. <https://www.brookings.edu/articles/the-new-military-industrial-complex-of-the-21st-century/>

Cooper, T. (2023). *Air power in the Russia-Ukraine war: A reassessment*. Royal United Services Institute (RUSI). <https://www.rusi.org/explore-our-research/publications/commentary/air-power-russia-ukraine-war-reassessment>

Fedorchak, Viktoriya. "The Russian way of warfare in the aerial domain." In *Russia seminar 2024, Russia's War against Ukraine Complexity of contemporary Clausewitzian war, February 14-15, 2024, Helsinki, Finland*, pp. 60-67. National Defense College, 2024.

Ferruzzi, C. (2023). *Russian Airpower in Ukraine: Analyzing the Performance of Russia's Aerospace Forces and its Implications for the Theory of Airpower*.

Gogua, G. (2023). A Revolution in Military Affairs and Modern Armaments in the Russia-Ukraine War of 2022-2023. *Future Human Image*, (20), 35-45.

Rickli, J. M., & Mantellassi, F. (2024). *The war in Ukraine: Reality check for emerging technologies and the future of warfare*. GCSP, Geneva Centre for Security Policy.